

Energy Efficiency Recommendations for Dar Al Oqoud, Jordan

IKI Project: Accelerating 0-emission building sector ambitions in the MENA region (BUILD_ME)

April 2021

Contents

✓ Introduction

- Background, Objectives and Methodology
- The KONN Project Boundary conditions

Analysis

- Starting Situation -Baseline and Current planning
- Investigation of Possible Measures

- Comparative overview
- Conclusion

Introduction The Dar Al Auqood Project Boundary conditions

Dar Al Aqoud

Aims

Creating a unique family house in Islamic architecture style and utilises natural sources of heating and cooling.

Target Groups / User

Single family house located in the northern area of Amman to be used during summer for vacations

Function

Residential single-family houses built with courtyard and swimming pool.

Size

Total built-up are of 250m².

Boundary conditions

Site : Context matters

City : Amman

Location : 12 KM north from central Amman

Context

The northern outskirts of 'Amman, central Jordan, Shafa Badran' lies on one of the rocky hills encompassing central Amman. On a preserved natural landscape of Mediterranean climate, sits the remains of a Roman encampment.

Boundary conditions I Climate Analysis

External temperatures (left) and degree days (right) in Amman (Jordan)*

Description

The climate in Amman is moderate. The annual average temperatures are about 18°C

Challenges and Potentials

A few hours per year undercut the freezing point.

Similar heating and cooling degree days of around 1,150 Kd indicate a balanced and moderate need for heating and cooling.

BUILD_MI

* The following paragraphs refer to Amman due to data availibility

* HDD: heating degree days; CDD: cooling degree days; according to ASHREA methodology

Boundary conditions I Climate Solar Irradiation in Amman (Jordan)

Description

High horizontal irradiation of > 2,000 kWh/(m²*a)

Challenges and Potentials

and > 1,100 kWh/(m²*a) for East, South and West orientation bring opportunities for solar based energy generation.

Boundary conditions I Economic and Emissions Inputs

Cost of Energy and Environmental impact

	Status
I	n Jordan, natural gas is only
ι	used for power generation
Ķ	plants, while the LPG, diesel
f	uel and electricity are used in
Ś	space heating.

Objectives

Energy price increases are assumed in the future and will be calculated in.

Energy prices and CO2 emissions					
Parameter	Unit	Electricity	Diesel		
Energy price	JOD/kWh	Mean 0.04	0.048		
Energy price	EUR/kWh†	0.055	0.06		
Price development	%/year	3	6		
CO2 emission factor	gCO2/kWh	635	300		
Economic parameters					
Interest rate (real)	%/year	5			
Calculation period	years	20			

• Exchange rate: 1 EUR = 1.3 JOD

Boundary Conditions I Building Building Data

Status

Small Single-Family houses in a vernacular Islamic architecture style.

Specific Challenge

Located in remote areas. It is significant to reduce on-site workmanship to the minimum aiming to reduce human impact on the environment and reduce need for maintenance.

Building Key Information		
Data	Input	
Latitude	32.0496081	
Longitude	35.9565306	
Elevation [m]	+864	
Utilization	SFH	
Number of floors	1	
Number of apartment	1	
Conditioned floor area [m ²]	47 (1 zone = living room	
Clear room height [m]	Aver. 5.7	
Conditioned volume [m ³]	266	
Number of inhabitants [#]	4	
Year of construction	2021	

Analysis Starting Situation -Baseline and Current planning

Business as Usual Baseline in the country

The key components of the energy concept are illustrated in this table, it shows that the building envelope is in line with the thresholds of the current building code. While no special attention is given to use renewable energy sources.

Parameters	Baseline	
Roof insulation (U-Value)	0.55 W/m²K	
Wall insulation (U-Value)	0.57 W/m²K	
Floor insulation (U-Value)	1.2 W/m²K	
Windows (U-Value; G- Value) Window fraction	3.0 W/m²K; 0.78 Ø 30%	
Shading	Manual	
Air tightness	0.25 1/h	
Heat supply	reversible split unit - COP 3.5	
Cold supply	reversible split unit - COP 3.4	
Hot water	-	
Ventilation systems	Natural ventilation	
Lighting systems	LED	
Renewable energy	No	
Set temperature cooling/heating	24°C / 21°C	

CO2 - Emission

4.7 kg / (m²*a)

CO.

Current situation Building Characteristics as planned

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity) and Solar collectors (for hot water).

This leads to energy savings and emission reduction.

Parameters	Baseline
Roof insulation (U-Value)	1.6 W/m²K
Wall insulation (U-Value)	0.67 W/m²K
Floor insulation (U-Value)	1.2 W/m ² K
Windows (U-Value; G- Value)	3.0 W/m²K; 0.78
Window fraction	Ø 30%
Shading	Fixed Shading
Air tightness	0.25 1/h
Heat supply	reversible split unit* - COP 3.5
Cold supply	reversible split unit - COP 3.6
Hot water	-
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	-
Set temperature cooling/heating	24°C / 21°C

Energy Cost 24.1 EUR / (m^{2*}a)

CO2 - Emission 6.3 kg / (m^{2*}a)

Current situation (project developer)

Results VS. BaU

The proposed design seems to be less energy efficient in comparison to the BAU cases.

The energy consumption of this traditional Arabic architecture is difficult to estimated without a dynamic thermal simulation.

Overview of Analyzed Measures

Scope of Measures

Envelope	Renewables	Out of the Box	
Roof insulation	PV	Solar winter garden	
External wall insulation	Solar water heaters	Earth ground heat exchanger	
Windows			

External wall

Current Variants

- 100 cm wall: U-Value = 0.67 W/m2K.
- 75 cm wall: U-Value = 1.01 W/m2K.
- 50 cm wall: U-value = 1.62
 W/m2K

The BaU and improved variants

- BaU: 8 cm insulation
- Var 1 3: 10 15 cm insulation

Result: The **Var 1** is the most cost effective measure with 10 cm insulation.

BUILD_ME Pilot Project Jordan

-36% 1,000 906 900 116 18 800 700 625 591 583 577 577 579 115 17 600 114 17 114 17 124 17 133 16 143 500 16 400 796 300 517 484 476 462 456 450 200 100 0 -100 Current Current Current BaU Var Var 2 Var 3 0.57 - 0.36 - 0.30 (1.62)(1.01)- 0.43 (0.67)Residual Values 1 & M nvestment Replacement Energy Cost

Global Cost

Guidehouse

Roof

Current Variants

Roof with U-value = 1.62 W/m2K

The BaU and improved variants

- BaU: 8 cm insulation
- Var 1 − 3: 10 − 15 cm insulation

Energy demand [kWh/(m²a)]

Result: Var 2 is the most cost effective measure, with 12 cm insulation.

Windows

Bau / Current case

 Single glazing (U value 5.8 W/m²K)

Improved Variants

- Double glazing (U value 2,8 W/m²K),
- Double glazing lowE (U value 1,3 W/m²K)

Result: Var 2 – Double glazing lowE is the most cost effective measure and has 28% energy saving potential

Guidehouse

Energy demand [kWh/(m²a)]

Renewables | ST

ST utilization for DHW

Analysis

- BaU: No solar collectors.
- Var 1: 50% coverage (2 m²)
- Var 2: 90% coverage (4 m²)

ST utilization for swimming pool¹

Demand: 4500 kWh/a Collector area needed: 5 m² Cost: 200 €/m² -> 1000 €

Compared electricity cost: 0.11 ct/kWh -> 495 €/a

 \rightarrow Solar thermal support for pool heating should be considered.

Result: Solar thermal collectors can cover the hot water demand and are a cost-effective measure.

BUILD

20 BUILD_ME

Result: PV is cost-effective and 4 kWp would be optimal in this case.

Renewables | PV

Bau / Current case

Analysis

No Photovoltaic

Improved Variants

- Var 1 4: 1 kWp 4 kWp
- 1 kWp needs around 7 m² of area.

Final Energy Demand

Global Cost

Results & Conclusion

Overview of recommended measures

Four steps to reduce energy demand significantly

Guidehouse

Optimized Solution Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity).

This leads to energy savings and emission reduction.

Parameters	Optimized Building
Roof insulation (U-Value)	0.43 W/m²K
Wall insulation (U-Value)	0.43 W/m²K
Floor insulation (U-Value)	1.2 W/m²K
Windows (U-Value; G- Value)	1.5 W/m²K; 0.78
Window fraction	Ø 30%
Shading	Fixed Shading
Air tightness	0.25 1/h
Heat supply	Reversible split unit - COP 3.5
Cold supply	Reversible split unit - COP 3.6
Hot water	-
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	3 kWp (PV)
Set temperature cooling/heating	24°C / 21°C

Comparative overview

BaU vs. Current vs. Optimized vs. Selected measures

Conclusion

- The suggested measures and the current situation lead to a significant decrease in energy demand
- The optimized solution, detected the most cost effective efficiency measures

Savings (Base vs. Optimized) Energy: 90% Cost: 37%

Recommendations

Four steps to reduce energy demand significantly

BEP tool has its limitations to calculate such unique building and might not illustrate (overestimating) the cooling demand correctly.

Contact

Riadh Bhar Managing Consultant riadh.bhar@guidehouse.com

Eslam Mahdy Senior Consultant eslam.mahdy@guidehouse.com

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

