

Energy Efficiency Recommendations for Beverly Hills - 229, Emirates Realestate Egypt

IKI Project: Accelerating 0-emission building sector ambitions in the MENA region (BUILD_ME)

September 2120

Introduction to the BUILD_ME project

BUILD_ME

Contents

Introduction

- Background, Objectives and Methodology
- Project Boundary conditions

Analysis

- Starting Situation -Baseline and Current planning
- Investigation of Possible Measures

Comparative overview

BUILD_ME

Conclusion

Introduction Background, Objectives and Methodology

Photo by Scott Graham on Unsplas

3

Introduction BUILD_ME Project and the Objectives of Pilot Projects

Approach and Methodology

Steps Towards a Low Energy Building

BUILD MI

- Initial timeline to be adjusted according to the demands and development of the pilot project.
- Remain in close exchange of data, information and concepts
- Field visits will be coordinated and executed by BUILD_ME National Partners and/or local experts.

Methodology

Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Egypt)

ENERGY CALCULATION

- individual building geometries and windows (incl. orientation)
- Hourly based energy calculation using the international ISO 52016 norm
- Based on the energy demand calculation (useful demand) the HVAC systems are sized
- Five efficiency levels for each HVAC system can be selected individually
- Meteonorm data base delivers detailed local weather input (hourly)

GLOBAL COST

- Calculation of energy cost and investment cost of the systems, based on the HVAC system sized in the energy calculation
- Energy price systematic and PV clearing can be adapted to local situation (here: Jordan)
- Residual values at the end of the calculation period for the systems are considered

Methodology Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Egypt)

Methodology of the Building Energy Performance Tool

BUILD_ME

Guidehouse

Introduction Cairo West Residence Boundary conditions

Photo by Matt Duncan on Unsplashed

Beverly Hills - 229

Aims

Creating a multifamily house that provides residents with the high levels of thermal comfort and provide an example of the energy efficient buildings in Egypt.

Target Groups

Upper middle class housing for families in Greater Cairo.

Function

A diverse range of residential units that will be offered for both sale and rental.

Size

Total area of around 1200 m2 on 6 floors. The building has 15 housing units with total number of around 60 occupants/users.

Guidehouse

Boundary conditions

Site : Context matters

City : Giza, Greater Cairo

Location : 36 KM west of Tahrir Sq.

Context

The building located in Beverly Hills, which is a gated community in Al Sheikh Zayed city, Cairo.

Boundary conditions I Climate Analysis

Temperature and solar radiation, Cairo (Egypt)

Description

The climate in Cairo is primarily hot and reaches an average humidity rate of 56%. External temperatures range from above 13 to 41°C with average temperatures around 24°C.

Boundary conditions I Climate Analysis

Heating and cooling degree days in Cairo (Egypt)*

Description

High number of >1,800 of CDD cooling degree days and a limited number of 291 of HDD heating degree days.

Challenges and Potentials

The amount of cooling degree days is more than six times higher than the heating degree days. Therefore, major share of the energy demand accumulates for cooling.

* Calculated according to ASHRAE 2001 methodology

Boundary conditions I Climate Solar Irradiation in Cairo (Egypt)

Description

High horizontal irradiation of > 2,000 kWh/(m²*a) and >1000 kWh/(m²*a) for East, South and West orientation.

Challenges and Potentials

Big potentials for energy generation through solar radiation, solar water heaters, PVs and solar cooling could be utilized.

Boundary conditions I Economic and Emissions Inputs

Cost of Energy and Environmental impact

Status

In Egypt, electricity is main source of power in household consumption. Natural gas is also used for cooking purposes. Energy subsidies will be totally cut in 2023.

Objectives

Energy price increases are assumed in the future and will be calculated in.

Energy prices and CO2 emissions						
Parameter	Unit	Electricity	Natural Gas			
Energy price	EG Pound/kWh	Mean 1.0 - 1.45	3.10 per m3			
Energy price	EUR/kWh	0.056 - 0.082	0.18 per m3			
Price development in the last 5 years	%/year	25%	6%			
CO2 emission factor	gCO2/kWh	444	220			
Economic parameters						
Interest rate (real)	%/year	9.25				
Calculation period	years	20				

• Exchange rate: 1 EUR = 17.61 EGP as of 29.05.2020

Boundary Conditions I Building Building Data

Status

The multi-family is under construction and it is planned to be delivered before end of 2021.

Specific Challenge

The building in the final phases of construction which leaves a limited room for intervention.

Building Key Information					
Data	Input				
Latitude	30.065042,				
Longitude	30.946856				
Elevation [m]	155				
Utilization	MFH				
Number of floors	6				
Number of apartment	15				
Conditioned floor area [m ²]	1200				
Clear room height [m]	3,1				
Conditioned volume [m ³]	3720				
Number of inhabitants [#]	60				
Year of construction	2018-2021				

Analysis Starting Situation -Baseline and Currer planning

y Jonathan Klok on Unsplashed

Business as Usual Based on building typology analysis

The key components of the energy concept are illustrated in this table, it shows that the building envelope is in line with the thresholds of the current building code. While no special attention is given to use renewable energy sources.

Parameters	Baseline
Roof insulation (U-Value)	3.2 W/m²K
Wall insulation (U-Value)	2.2 W/m²K
Floor insulation (U-Value)	2.2 W/m²K
Windows (U-Value; G-Value)	5.8 W/m²K; 0.85
Window fraction	Ø 15%
Shading	No
Air tightness	0.25 1/h
Heat supply	Reversible split unit - COP 2.5
Cold supply	Reversible split unit - COP 2.5
Hot water	Gas instantaneous
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	No
Set temperature cooling/heating	23°C / 23°C

CO.

Energy Cost 8.3 EUR / (m^{2*}a)

CO2 - Emission 4.1 kg / (m^{2*}a)

BUILD_ME

Current Situation Building Characteristics as currently planned

The key components of the energy concept are illustrated in this table, it shows that the building envelope is in line with the thresholds of the current building code. While no special attention is given to use renewable energy sources.

Parameters	Baseline
Roof insulation (U-Value)	0.46 W/m²K
Wall insulation (U-Value)	1.1 W/m²K
Floor insulation (U-Value)	2.2 W/m²K
Windows (U-Value; G-Value)	2.88 W/m²K; 0.7
Window fraction	Ø 15%
Shading	No
Air tightness	0.25 1/h
Heat supply	Reversible split unit - COP 3.2
Cold supply	Reversible split unit - COP 3.2
Hot water	Gas instantaneous
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	No
Set temperature cooling/heating	23°C / 23°C

Comparison: BaU and Current Planning

The proposed design is significantly more energy efficient in comparison to the BAU cases.

The proposed measures will also result in a cost decrease due to the significantly lower energy cost.

However, the proposed measures do not reach the cost optimal range.

Energy savings: 43%

Global cost savings: 40%

BUILD_ME

Building Envelope I External wall

Results

effective measure

Guidehouse

BUILD_ME

BaU **Final Energy Demand Global Cost** no insulation Current Project Plan 160 90 140 . 126 121 80 118 Current 118 Demand [kWh/(m²a)] • 6 7 70 7 cm insulation (U-Value = $0.46 \text{ W/m}^2\text{K}$) 60 50 40 Var 1 - 5 30 20 Energy [20 3 - 12 cm insulation (U-Value = 0.92 - 120 10 0.25 W/m²K) -20 BaU (no Var 1 -Var 2 -Var 3 -Var 4 -0 3cm 5cm insul. 8cm 10cm Var 2 -Var 1 -Var 3 Var 5 -BaU (no Var 4 insulation insulation insulation insulation insulation 3.2) 8cm 12cm insul.. 3cm 5cm 10cm Result: Var 5 with 12 cm is the (0.36)(0.95)(0.43)(0.64)insulation insulation insulation insulation 3.2) (0.95)(0.3)(0.64)(0.43)(0.36)most cost effective measure. Replacement Investment Space heating Space cooling DHW However, the current project plan Residual Values Energy Cost Auxiliary energy ■ I & M is already close. Lighting

Results

Guidehouse

• Specific global costs

117

Var 5 -

12cm

(0.3)

Building Envelope I Windows

Results

BaU – Single glazing U value 5.7 W/m²K G-Value 0.85

Double glazing | low E (Var 1|2) U value 2.8 | 1.2 W/m²K G-Value 0.7 | 0.65

Triple glazing (Var 2)

U value 0.9 W/m²K, G-Value 0.5

Guidehouse

Var 3 is the more cost-effective case.

Final Energy Demand

Space heatingSpace coolingDHWLightingAuxiliary energy

Window Fraction

Analysis

Guidehouse

Air Tightness

What is the effect of air tightness?

BUILD_ME Pilot ProJect Jordan

Guidehouse

Shading concept

Analysis

BUILD_ME Pilot ProJect Jordan

BUILD_ME

HVAC I Efficiencies

Analysis

BaU

Cooling/Heating: 2.5 COP

Var 1 | 2 | 3

Reversible Split Unit with increased efficiency (COP: 3.2 | 4.2 | 5.3)

Var 3 (System with best COP) has the highest effect and is very cost-effective.

Final Energy Demand

Operational Temperatures

Analysis

Guidehouse

Renewables I Solar Thermal

Analysis

Current

No solar hot water generation

Var 1 | 2 | 3

30 | 20 | 10 m² solar collector area installed, which is about 100% | 50% | 25% of the DHW demand covered by solar.

BaU with **no solar** is the most cost effective measure.

Final Energy Demand

Space heating Space cooling DHW

Renewables I PV

Analysis

Current

no PV

Sizing (net metering as assumption)

Var 1 | 2 | 3 PV 2.5 | 5 | 10 kWp (Roof area 60 | 90 | 140 m²)

Var 3 with 10 kWp PV is the most cost effective measure. (based on the electricity consumption of the Current!)

Results & Conclusion

Overview of recommended measures

Four steps to reduce energy demand significantly

Optimized Solution Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity).

This leads to energy savings and emission reduction.

Parameters	Optimized Building
Roof insulation (U-Value)	0.3 W/m²K
Wall insulation (U-Value)	0.38 W/m²K
Floor insulation (U-Value)	2.2 W/m²K
Windows (U-Value; G- Value)	2.88 W/m²K; 0.3
Window fraction	Ø 15%
Shading	Solar Glazing
Air tightness	0.25 1/h
Heat supply	Reversible split unit - COP 5.3
Cold supply	Reversible split unit - COP 5.3
Hot water	Gas instantaneous
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	10 kWp (PV)
Set temperature cooling/heating	26°C / 20°C

CO,

Comparative overview

BaU vs. Current vs. Optimized

Conclusion

- The suggested measures and the current situation lead to a significant decrease in energy demand
- The optimized solution, detected the most cost effective efficiency measures

Savings Energy: 89 % Cost: 69%

Guidehouse

Final Energy Demand

Global Cost

Optimized vs. current

Payback of single measures and whole package

Parameters	Optimized	Investment (optimized-current) [EUR]	Energy cost savings* [EUR / year]	Payback [years]	Lifetime [year]
Roof insulation (U-Value)	0.3 W/m²K	1,323	-138	10	40
Wall insulation (U-Value)	0.38 W/m²K	7,698	-1,560	5	40
Windows (U-Value; G-Value)	0.9 W/m²K; 0.5	14,508	-783	19	30
Window fraction	Ø 15%	0	0	-	30
Shading	Solar glazing	3,990	-658	7	30
Air infiltration through leakages	0.25 1/h	0	0	-	-
Heat/Cold supply	reversible split unit - COP 5.3	620	-2,028	1	20
Renewable energy	10 kWp (PV, maximum)	17,460	-1,421	13	20
Set temperature cooling/heating	26°C / 20°C	0	-1,586	immediately	-
	Total (current to optimized)**	45,599 (4%)***	-8,174 (-60%)	6	

* Remark: The energy cost savings have been calculated conservatively based on the current electricity starting price (appr. 8 Cent/kWh).

** Remark: Investment and savings of single measure savings cannot be summed up due to synergies between the measures (e.g. lower window fraction leads to lower cooling supply costs).

*** Remark: Compared to costs of current case and overall construction costs assumptions of 500 Euro/m² (4 % additional costs).

Key conclusion

Main take aways for the Beverly Hills Project

Contact

Riadh Bhar Managing Consultant riadh.bhar@guidehouse.com

Eslam Mahdy Senior Consultant eslam.mahdy@guidehouse.com

Rana Abouzeid,IDG Main Local Partner rana.abouzeid@idg.com.eg

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

/