

Energy Efficiency Recommendations for KONN Modular House, Jordan

IKI Project: Accelerating 0-emission building sector ambitions in the MENA region (BUILD_ME)

May 2020

Introduction to the BUILD_ME project

BUILD_ME

Contents

Introduction

- Background, Objectives and Methodology
- The KONN Project Boundary conditions

Analysis

- Starting Situation -Baseline and Current planning
- Investigation of Possible Measures

- Comparative overview
- Conclusion

Introduction Background, Objectives and Methodology

Introduction BUILD_ME Project and the Objectives of Pilot Projects

Approach and Methodology

Steps towards a low energy building

- Initial timeline to be adjusted according to the demands and development of the pilot project.
- Remain in close exchange of data, information and concepts
- Field visits will be coordinated and executed by BUILD_ME National Partners and/or local experts.

Methodology

Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Jordan)

ENERGY CALCULATION

- individual building geometries and windows (incl. orientation)
- Hourly based energy calculation using the international ISO 52016 norm
- Based on the energy demand calculation (useful demand) the HVAC systems are sized
- Five efficiency levels for each HVAC system can be selected individually
- Meteonorm data base delivers detailed local weather input (hourly)

GLOBAL COST

- Calculation of energy cost and investment cost of the systems, based on the HVAC system sized in the energy calculation
- Energy price systematic and PV clearing can be adapted to local situation (here: Jordan)
- Residual values at the end of the calculation period for the systems are considered

Methodology Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Jordan)

Methodology of the Building Energy Performance Tool

Introduction The KONN Project Boundary conditions

KONN Modular Houses

Aims

Creating a community based on Jordanian family values. To Improve quality of life through smart modular construction and technologies empowering community members and encouraging change by simplifying the complex

Target Groups

Affordable housing for the low income groups and families in rural areas and outskirts of urban centers.

Function

Residential single family houses including a small garden.

Size

The project offers diffrent sizes of 50, 85 and 120 square meters.

Boundary conditions

Site : Context matters

City : Umm al-Yanabi, Ajlun

Location : 40 KM South of Irbid

Context

The northern outskirts of 'Ajlun, north of Jordan, Umm al-Yanabi' lies on one of the hills encompassing the 'Ajlun Natural Reserve. The small village of around one thousand inhabitants sits on the remains of a Byzantine settlement; cross-vaults as well as old walls.

Boundary conditions I Climate Analysis

External temperatures (left) and degree days (right) in Amman (Jordan)*

Description

The climate in Amman is moderate. The annual average temperatures are about 18°C

Challenges and Potentials

A few hours per year undercut the freezing point.

Similar heating and cooling degree days of around 1,150 Kd indicate a balanced and moderate need for heating and cooling.

* The following paragraphs refer to Amman due to data availibility

* HDD: heating degree days; CDD: cooling degree days; according to ASHREA methodology

Boundary conditions I Climate Solar Irradiation in Amman (Jordan)

Description

High horizontal irradiation of > 2,000 kWh/(m^{2*}a)

Challenges and Potentials

and > 1,100 kWh/(m²*a) for East, South and West orientation bring opportunities for solar based energy generation.

Boundary conditions I Economic and Emissions Inputs

Cost of Energy and Environmental impact

Status	
--------	--

In Jordan, natural gas is only used for power generation plants, while the LPG, diesel fuel and electricity are used in space heating.

Objectives

Energy price increases are assumed in the future and will be calculated in.

Energy prices and CO2 emissions				
Parameter	Unit	Electricity	Diesel	
Energy price	JOD/kWh	Mean 0.04	0.048	
Energy price	EUR/kWh†	0.055	0.06	
Price development	%/year	3	6	
CO2 emission factor	gCO2/kWh	635	300	
Economic parameters				
Interest rate (real)	%/year	5		
Calculation period	years	20)	

• Exchange rate: 1 EUR = 1.3 JOD

Boundary Conditions I Building

Building Data

Status

Small Single Family houses in a modular construction

Specific Challenge

Located in remote areas. It is significant to reduce on-site workmanship to the minimum aiming to industrialize building components.

Building Key Information		
Data	Input	
Latitude	opt	
Longitude	opt	
Elevation [m]	opt	
Utilization	SFH	
Number of floors	1	
Number of apartment	1	
Conditioned floor area [m ²]	47	
Clear room height [m]	2.5 m	
Conditioned volume [m ³]	127	
Number of inhabitants [#]	4	
Year of construction	2020	

Analysis Starting Situation -Baseline and Current planning

Business as Usual Building Characteristics as planned

The key components of the energy concept are illustrated in this table, it shows that the building envelope is in line with the thresholds of the current building code. While no special attention is given to use renewable energy sources.

Parameters	Baseline
Roof insulation (U-Value)	0.55 W/m²K
Wall insulation (U-Value)	0.57 W/m²K
Floor insulation (U-Value)	3.6 W/m²K
Windows (U-Value; G- Value)	5.7 W/m²K; 0.85
Window fraction	Ø 5%
Shading	no
Air tightness	0.25 1/h
Heat supply	reversible split unit - COP 2.5
Cold supply	reversible split unit - COP 2.5
Hot water	electric instantaneous
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	No
Set temperature cooling/heating	23°C / 21°C

Current situation (KONN) Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity) and Solar collectors (for hot water).

This leads to energy savings and emission reduction.

Parameters	Baseline
Roof insulation (U-Value)	0.41 W/m²K
Wall insulation (U-Value)	0.46 W/m²K
Floor insulation (U-Value)	0.68 W/m²K
Windows (U-Value; G- Value) Window fraction	1.8 W/m²K; 0.75 Ø 5%
Shading	no
Air tightness	0.25 1/h
Heat supply	reversible split unit - COP 2.5
Cold supply	reversible split unit - COP 2.5
Hot water	electric instantaneous Solar
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	3.8 kWp (PV) 5m² (Solar)
Set temperature cooling/heating	23°C / 21°C

CO2 - Emission 0.7 kg / (m²*a)

Current situation (project developer)

Results VS. BaU

The proposed design is significantly more energy efficient in comparison to the BAU cases.

Although the energy cost decrease, the proposed measures will result in a cost increase due to the high investment cost.

The proposed measures seem not to hit the cost optimal point for optimization

Specific I&M

• Specific total costs

Ventilation

Auxiliary energy

Analysis Investigation of Possible Measures

Overview of Analyzed Measures

	Building Envelope		HVAC and Systems	Renewable Energy
			ITVAC and Systems	Nellewable Lifergy
External Wall	 Insulation thickness variants Introducing ETICS solution 	Cooling	 What is the cost optimal efficiency? [COP] 	Renewable energy sources
Roof	 Insulation thickness variants Reduction of layers 	Cooling	What is the saving of an adjusted temperature?	Solar water heaters
Windows	 Verifying different Window U- and G-Values 	Heating	 What is the saving of an adjusted temperature? 	Small size wind turbines
Air tightness	Checking the effect of air tightness	Lighting	Optimal type of lighting?	
Shading	• What is the effect of shading?			

Guidehouse

BUILD_ME Pilot ProJect Jordan

Building Envelope External wall

ETICS providers and suppliers are available in Jordan. We will further investigate that.

- Thermal heat bridges may appear. For example: screws of sandwich panel may lead thermal leakage.
- To increase the insulation of the sandwich panel. Different variation to be considered.

Existing external wall solution

Possible ETICS solution

人 Guidehouse

BUILD_ME

Building Envelope I External wall

Results

Modified insulation thickness with given sandwich panel

Current -> 5cm = $0.59 \text{ W/m}^{2}\text{K}$

0.46 mentioned by KONN?

(attention 0.57 W/m²K asked by Building Code!)

6 cm -> 0.51 W/m²K

ETICS solution

6 cm ETICS + 12 cm concrete -> 0.51 W/m²K

8 cm ETICS + 12 cm concrete -> 0.40 W/m^2

12 cm ETICS + 12 cm concrete -> 0.27 W/m²K

Var 2 (ETICS with 8 cm) is the most cost effective measure

Final Energy Demand

Total space heating DHW Space cooling Lighting Auxiliary energy

Ventilation

Specific Investment Specific Replacement Specific Residual Value Specific Energy Cost Specific I&M • Specific total costs

Guidehouse

Building Envelope : Roof

- Layers of roof construction may be reduced. This will make the roof lighter, simple and cheaper
- Not sufficient thermal insulation in the corners may lead to Thermal heat bridges
- A metal cop to cover the Attica (surrounding parapet) may be useful to protect the roof and reduce maintenance as well.

Existing roof solution

Possible reduced solution

BUILD_MI

Results

 $0.58 \text{ W/m}^{2}\text{K}$

Current 0.56 W/m²K from the plans

0.41 was mentioned by KONN

Eliminate (gravel + screed)

Increase roof insulation

(without gravel + screed)

 $-10 \text{ cm} \rightarrow 0.34 \text{ W/m}^2\text{K}$

-15 cm -> 0.24 W/m²K

Building Envelope I Roof

- Total space heating DHW Space cooling
- Auxiliary energy
- Lighting Ventilation

Specific I&M

Global Cost

Specific Energy Cost • Specific total costs

Final Energy Demand

Var 2 (insulation thickness 10

cm) is the most cost effective measure

BUILD_ME Pilot ProJect Jordan

Guidehouse

BUILD_ME

Results Single glazing (baseline)

Building Envelope I Windows

U value 5.7 W/m²K, G-Value 0,85

Double glazing

U value 3.2 W/m²K, G-Value 0,7

Double glazing – low E

U value 1.3 W/m²K, G-Value 0,65

Var 2 (U-Value of 1.3 W/m²/K) is the most cost effective measure

BUILD ME Pilot ProJect Jordan

HVAC I Efficiencies

Analysis

Baseline / Current Situation Reversible Unit Heating 2.5 COP I Cooling 2.5 COP

Var 1

Reversible Unit Heating 4 COP I Cooling 4 COP

Var 2 (best available technology) Reversible Unit Heating 5 COP I Cooling 5 COP

Var 2 (System with COP 5) is the most cost effective measure

Final Energy Demand

Auxiliary energy
 Ventilation

BUILD_ME Pilot ProJect Jordan

Global Cost

Renewables I Solar Thermal

Analysis

Baseline no ST = electrical inst. heater **Current Situation** ST - 5m² Var 1 $ST - 2 m^2$ Var 2 $ST - 4m^2$

Var 1 (2 m² collector area) is the most cost effective measure

人 Guidehouse

Final Energy Demand

- Total space heating
 DHW
 Space cooling
 Lighti
- Auxiliary energy
 Ve
- LightingVentilation

Guidehouse

29 BUILD_ME

Renewables I PV

Analysis

Sizing (net metering as assumption)

Baseline no PV Current Situation PV - 3.8 kWp Var 1 PV - 1.5 kWp Var 2 PV - 4 kWp Var 2 (3 kWp PV) is the most

Var 2 (3 kWp PV) is the most cost effective measure, based on the electricity consumption of the BaU!!!

Final Energy Demand

- lotal spa
- Total final energy (incl. PV)

Results & Conclusion

Overview of recommended measures

Four steps to reduce energy demand significantly

BUILD_ME Pilot ProJect Jordan

Optimized Solution (KONN) Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity) and Solar collectors (for hot water).

This leads to energy savings and emission reduction.

Parameters	Baseline
Roof insulation (U-Value)	0.34 W/m²K
Wall insulation (U-Value)	0.40 W/m²K
Floor insulation (U-Value)	3.6 W/m ² K
Windows (U-Value; G- Value) Window fraction	1.3 W/m²K; 0.65 Ø 5%
Shading	Overhang South
Air tightness	0.25 1/h
Heat supply	reversible split unit - COP 5
Cold supply	reversible split unit - COP 5
Hot water	electric instantaneous Solar
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	1 kWp (PV) 2m² (Solar Thermal)
Set temperature cooling/heating	26°C / 20°C

Comparative overview

Baseline vs. Current vs. Optimized

Conclusion

- The suggested measures and the current situation lead to a significant decrease in energy demand
- The optimized solution, detected the most cost effective efficiency measures

Savings

Energy: 141 / 14 kWh/a Cost: 162 / 216 EUR/a

Global Cost

Guidehouse

BUILD_ME Pilot ProJect Jordan

Key conclusion

Main take aways for the KONN Project

BUILD_ME Pilot ProJect Jordan

Contact

Riadh Bhar Managing Consultant riadh.bhar@guidehouse.com

Eslam Mahdy Senior Consultant eslam.mahdy@guidehouse.com

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

