

Energy Efficiency Recommendations for A Private Villa, Jordan

IKI Project: Accelerating 0-emission building sector ambitions in the MENA region (BUILD_ME)

September 2120

Introduction to the BUILD_ME project

BUILD_ME

Contents

✓ Introduction

- Background, Objectives and Methodology
- The KONN Project Boundary conditions

Analysis

- Starting Situation -Baseline and Current planning
- Investigation of Possible Measures

- Comparative overview
- Conclusion

Introduction Background, Objectives and Methodology

Photo by Scott Graham on Unsplas

3

Introduction BUILD_ME Project and the Objectives of Pilot Projects

Approach and Methodology

Steps Towards a Low Energy Building

BUILD MI

- Initial timeline to be adjusted according to the demands and development of the pilot project.
- Remain in close exchange of data, information and concepts
- Field visits will be coordinated and executed by BUILD_ME National Partners and/or local experts.

Methodology

Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Jordan)

ENERGY CALCULATION

- individual building geometries and windows (incl. orientation)
- Hourly based energy calculation using the international ISO 52016 norm
- Based on the energy demand calculation (useful demand) the HVAC systems are sized
- Five efficiency levels for each HVAC system can be selected individually
- Meteonorm data base delivers detailed local weather input (hourly)

GLOBAL COST

- Calculation of energy cost and investment cost of the systems, based on the HVAC system sized in the energy calculation
- Energy price systematic and PV clearing can be adapted to local situation (here: Jordan)
- Residual values at the end of the calculation period for the systems are considered

Methodology Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Jordan)

Methodology of the Building Energy Performance Tool

BUILD_ME

Guidehouse

Introduction The Project Boundary conditions

Photo by Matt Duncan on Unsplashed

The Project Key Information

Aims

Building a single family house in Jordan. The building will represent the modern lifestyle of Jordanian families.

Target Groups

An upper-middle class house in Amman, the Capital of Jordan.

Function

Residential single family house including a small garden and a swimming pool.

Size

The villa will be 455 square meters on two floors and roof rooms.

BUILD_ME

Boundary conditions

Site : Context matters

City : Amman

Location : Suburbs of Amman City

Context

The villa is located in a town called Bilal (north-western part of Amman Governorate Jordan. It is considered to be a low density populated area.

The land is surrounded by a few oak trees with some scattered olive trees.

Amman

BUILD M

Guidehouse

Boundary conditions I Climate Analysis

External temperatures (left) and degree days (right) in Amman (Jordan)*

Description

The climate in Amman is moderate. The annual average temperatures are about 18°C

Challenges and Potentials

A few hours per year undercut the freezing point.

Similar heating and cooling degree days of around 1,150 Kd indicate a balanced and moderate need for heating and cooling.

BUILD_MI

* The following paragraphs refer to Amman due to data availibility

* HDD: heating degree days; CDD: cooling degree days; according to ASHREA methodology

Boundary conditions I Climate Solar Irradiation in Amman (Jordan)

Description

High horizontal irradiation of > 2,000 kWh/(m²*a)

Challenges and Potentials

and > 1,100 kWh/(m²*a) for East, South and West orientation bring opportunities for solar based energy generation.

Boundary conditions I Economic and Emissions Inputs

Cost of Energy and Environmental impact

Status	Energy prices and CO2 emissions			
In Jordan, natural gas is only used for power generation plants, while the LPG, diesel fuel and electricity are used in space heating. Objectives Energy price increases are assumed in the future and will be calculated in.	Parameter	Unit	Electricity	LPG
	Energy price	JOD/kWh	Mean 0.04	0.038
	Energy price	EUR/kWh†	0.055	0.05
	Price development	%/year	3	3
	CO2 emission factor	gCO2/kWh	635	230
		Economic parameters		
	Interest rate (real)	%/year	5	

years

• Exchange rate: 1 EUR = 1.3 JOD

Calculation period

20

Boundary Conditions I Building Building Data

Status

Single Family house in the design phase

Specific Challenge

To reduce the operational costs and energy consumption while keeping the extra costs to the minimum.

Building Key Information		
Data	Input	
Utilization	SFH	
Number of floors	2	
Number of apartment	1	
Conditioned floor area [m ²]	360	
Clear room height [m]	2.95 m	
Conditioned volume [m ³]	1062	
Number of inhabitants [#]	4	
Year of construction	2021	

BUILD_ME

Analysis Starting Situation -Baseline and Current planning

y Jonathan Klok on <u>Unsplashed</u>

Business as Usual Building Characteristics

The key components of the energy concept are illustrated in this table, it shows that the building envelope is in line with the thresholds of the current building code. While no special attention is given to use renewable energy sources.

Parameters	Baseline
Roof insulation (U-Value)	0.55 W/m²K
Wall insulation (U-Value)	0.57 W/m²K
Floor insulation (U-Value)	2.2 W/m²K
Windows (U-Value; G-Value)	5.7 W/m²K; 0.85
Window fraction	Ø 15%
Shading	No
Air tightness	0.25 1/h
Heat supply	Multi-split unit - COP 2.5
Cold supply	Multi-split unit - COP 2.5
Hot water	Gas instantaneous
Ventilation systems	Natural ventilation
Lighting systems	LED
Renewable energy	No
Set temperature cooling/heating	23°C / 23°C

CO.

Energy Cost 39.4 EUR / (m^{2*}a)

CO2 - Emission 3.6 kg / (m^{2*}a)

Current Situation as Designed

Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity) and Solar collectors (for hot water).

This leads to energy savings and emission reduction.

Baseline
0.42 W/m²K
0.52 W/m²K
0.72 W/m²K
2.8 W/m²K; 0.7
Ø 15%
Manual
0.25 1/h
LPG Boiler
reversible split unit - COP 3.2
Combined gas boiler
Mechanical Ventilation
LED
-
24°C / 21°C

CO.

Energy Cost 15.7 EUR / (m^{2*}a)

Current situation (project developer)

Results VS. BaU

The proposed design is significantly more energy efficient in comparison to the BAU cases.

Although the energy cost decrease, the proposed measures will result in a cost increase due to the high investment cost.

The proposed measures seem not to hit the cost optimal point for optimization

50% Energy savings

30% Cost savings

Global Cost

Guidehouse

Overview of Analyzed Measures

Scope of Measures

Systems	Renewable
Cooling	PV
Heating	Solar Thermal
Mechanical ventilation	
Operational temperatures	
	Systems Image: Cooling Heating Mechanical ventilation Operational temperatures

Air tightness

A Guidehouse

Building Envelope | External wall

Results

Var 3 -

Double

0.53)

DHW

Guidehouse

BaU **Final Energy Demand Global Cost** no insulation Current Project Plan 180 700 581 160 140 120 120 Current 453 438 431 429 429 8 cm insulation (U-Value = $0.42 \text{ W/m}^2\text{K}$) 100 000 Specific Energy Demand 80 Var 1 - 5 60 100 40 3 - 12 cm insulation (U-Value = 0.92 -20 0 0.25 W/m²K) 0 -100 BaU (no Var 1 -Var 3 -Var 5 -BaU (no Var 1 -Var 2 -Var 3 -Var 5 Var 2 -Var 4 -Var 4 3cm 12cm 3cm 5cm 8cm insul. 5cm 8cm 10cm insul. 10cm 12cm insulation insulation insulation insulation 3.2) insulation insulation insulation insulation insulation 3.2) Result: Var 4 with 10 cm is the (0.95)(0.64)(0.43)(0.36)(0.3)(0.36)(0.3)(0.95)(0.64)(0.43)most cost effective measure. Space heating Space cooling DHW However, the current project plan Investment Replacement Auxiliary energy Lighting is already close. Energy Cost Residual Values • Specific global costs ■ I & M

BUILD_ME

Building Envelope | Roof

Results

Guidehouse

Building Envelope | Windows

Results

BUILD_ME

(1.2, 0.65)

422

Analysis

Auxiliary energy

431

Window

Fraction

15%

Air Tightness

What is the effect of air tightness?

BUILD_ME

Guidehouse

Shading concept

Analysis

Var 4 is the most cost effective measure.

- Space heating Space cooling DHW Lighting
- Auxiliary energy

HVAC | Heating Efficiencies

Analysis

BUILD_ME

Guidehouse

HVAC | Heating Analysis

Current

- LPG Boiler (5,000 EUR)
- Split-unit (3,980 EUR)

Var 1 (LPG boiler only back-up)

- LPG Boiler (5,000 EUR)
- Reversible split-unit (5,700 EUR)

Electricity: 0.33 EUR/kWh (1st year) – 0.60 EUR/kWh (2nd year) LPG: 0.045 EUR/kWh (1st year) – 0.081 EUR/kWh (2nd year)

Current system of LPG boiler is will result in higher energy consumption, yet it is slightly cost effective.

Final Energy Demand

Global Cost

HVAC | Cooling Efficiencies

Analysis

Guidehouse

HVAC | Mechanical Ventilation Analysis

BaU

No mechanical ventilation

Var 1

Mechanical ventilation without heat recovery.

Var 2

Guidehouse

Mechanical ventilation with heat recovery (ca. 90%)

BaU (no mech. ventilation) is the most cost-effective. However, if a mech. ventilation system is installed, a heat recovery is costeffective.

Auxiliary energy

Ventilation

Operational Temperatures

Analysis

Guidehouse

Renewables I Solar Thermal

Analysis

Baseline

no ST

Var 1

ST - 4.5 m² (90% of demand covered)

Var 2

ST – 2.5 m² (50% of demand covered)

Var 3

Guidehouse

ST – 1.5 m² (25% of demand covered)

Var 1 (4.5 m² collector area) is the most cost effective measure

Final Energy Demand

PV earnings (FiT) 34 BUILD_ME

Energy Cost

Var 1 with 2 kWp PV is the most cost effective measure. (based on the electricity consumption of the Current!)

Renewables I PV

Analysis

Current

no PV

Sizing (net metering as assumption)

90 80 Energy Demand [kWh/(m²a)] 70 60 50 40 30 20 10 0 -10 -20 BaU (no PV) Var 2 - 50% Var 1 - nearly 100%

Final Energy Demand

Space heating DHW Auxiliary energy

Residual Values

• Specific global costs

■I&M

Current

no PV

Renewables I PV Analysis

Sizing (net metering as assumption)

Var 1 | 2 PV 15 | 30 m² (2.15 kWp | 4.3 kWp)

Var 2 with 2 kWp PV is the most cost effective measure. (based on the electricity consumption of the Current!)

PV

■ HH Electricity

Results & Conclusion

Photo by Xan Griffin on Unsplashed

Overview of recommended measures

Four steps to reduce energy demand significantly

Optimized Solution Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity) and Solar collectors (for hot water).

This leads to energy savings and emission reduction.

Parameters	Optimized
Roof insulation (U-Value)	0.38 W/m²K
Wall insulation (U-Value)	0.36 W/m²K
Floor insulation (U-Value)	0.7 W/m²K
Windows (U-Value; G- Value)	0.9 W/m²K; 0.3
Window fraction	Ø 15%
Shading	Manual Shading
Air tightness	0.05 1/h
Heat supply	Multi-split unit - COP 5
Cold supply	Multi-split unit - COP 5
Hot water	Gas combi Solar
Ventilation systems	Mechanical Ventilation
Lighting systems	LED
Renewable energy	2 kWp (PV) 4.5m² (Solar Thermal)
Set temperature cooling/heating	26°C / 20°C

CO,

Energy Cost 8.4 EUR / (m^{2*}a)

Comparative overview

Baseline vs. Current vs. Optimized

Conclusion

- The suggested measures and the current situation lead to a significant decrease in energy demand
- The optimized solution, detected the most cost effective efficiency measures

Savings Opt. vs BaU Energy: 73% Cost: 51%

Global Cost

Contact

Riadh Bhar Managing Consultant Guidehouse <u>riadh.bhar@guidehouse.com</u>

Eslam Mahdy senior Consultant Guidehouse <u>eslam.mahdy@guidehouse.com</u>

Eng. Ali Almarzouq RSS Specialist \ Studies Ali.Marzoug@rss.jo

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

