

Energy Efficiency Recommendations for New Mansoura University for Science & Technology, Egypt

IKI Project: Accelerating 0-emission building sector ambitions in the MENA region (BUILD_ME)

September 2120

Introduction to the BUILD_ME project

BUILD_ME

Contents

Introduction

- Background, Objectives and Methodology
- Project Boundary conditions

Analysis

- Starting Situation -Baseline and Current planning
- Investigation of Possible Measures

Comparative overview

BUILD_ME

Conclusion

Introduction Background, Objectives and Methodology

Photo by Scott Graham on Unsplas

3

Introduction BUILD_ME Project and the Objectives of Pilot Projects

Methodology

Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Egypt)

ENERGY CALCULATION

- individual building geometries and windows (incl. orientation)
- Hourly based energy calculation using the international ISO 52016 norm
- Based on the energy demand calculation (useful demand) the HVAC systems are sized
- Five efficiency levels for each HVAC system can be selected individually
- Meteonorm data base delivers detailed local weather input (hourly)

GLOBAL COST

- Calculation of energy cost and investment cost of the systems, based on the HVAC system sized in the energy calculation
- Energy price systematic and PV clearing can be adapted to local situation (here: Jordan)
- Residual values at the end of the calculation period for the systems are considered

Methodology Cost Benefit Analysis

HIGLIGHTS

- Besides classic CAPEX/ OPEX cost, it considers residual values
- Hourly based energy calculation
- Detailed local weather data is considered
- Energy price systematic and PV clearing adapted to local situation (Egypt)

Methodology of the Building Energy Performance Tool

Introduction New Mansoura University Boundary conditions

Photo by Matt Duncan on Unsplashed

Library Building

Aims

Aims to provide an excellent working environment to encourage high quality research, teaching and learning. The Central Library is considered as the main iconic building in the project

Target Groups

Students of the New Mansoura University

Function

A library with several halls and also a hub for university and academic events.

Size

Gross floor area of around 6,000 sqm spread over four floors.

Boundary conditions

Site : Context matters

City : New Mansoura City

Location : 200 KM North of Tahrir Sq.

Context

New Mansoura City is a newly developed city on the coast of the Mediterranean sea. It is developed by New Urban Communityy Authority (NUCA), Ministry of Housing, Egypt.

ource: Google Maps

Boundary conditions I Climate Analysis

Temperature and solar radiation, Alexandria (Egypt)

Description

External temperatures in Alexandria range from above zero to 35°C with yearly average temperatures around 21°C. January is the coldest month, August is the hottest one. The minimum temperature level does not fall below 0°C, which means that frost issues do not play a role in terms of construction projects.

Boundary conditions I Climate Analysis

Heating and cooling degree days in Alexandria (Egypt)

Description

High number of >1,300 of CDD cooling degree days and a limited number of 291 of HDD heating degree days.

Challenges and Potentials

The amount of cooling degree days are roughly three times higher compared with the heating degree days. Therefore, a significantly larger amount of the energy demand accumulates for cooling.

* Calculated according to ASHRAE 2001 methodology

Boundary conditions I Climate Solar Irradiation in Alexandria (Egypt)

A big potential for renewable energy lies within the solar irradiation in Alexandria. Horizontal irradiation of > 2,000 $kWh/(m^{2*}a)$ and >1000 kWh/(m²*a) for East, South and West orientation bring opportunities for energy generation through solar radiation. Especially the solar energy for cooling purposes appears to be interesting for the area. Meeting the need of the population with a source that is already and infinitely in place.

Boundary conditions I Economic and Emissions Inputs

Cost of Energy and Environmental impact

In Egypt, electricity is main source of power in household consumption. Natural gas is also used for cooking purposes. Energy subsidies will be totally cut in 2023.

Objectives

Energy price increases are assumed in the future and will be calculated in.

Energy prices and CO2 emissions						
Parameter	Unit	Electricity	Natural Gas			
Energy price	EG Pound/kWh	Mean 1.0 - 1.45	3.10 per m3			
Energy price	EUR/kWh	0.056 - 0.082	0.18 per m3			
Price development in the last 5 years	%/year	25%	6%			
CO2 emission factor	gCO2/kWh	444	220			
Economic parameters						
Interest rate (real)	%/year	9.25				
Calculation period	years	20				

• Exchange rate: 1 EUR = 17.61 EGP as of 29.05.2020

Boundary Conditions I Building Building Data

UNANGOVIN

Status

The library is the design phase and the construction is planned to start in 2021/2022.

Specific Challenge

The building is near to the coast which provides potential of sea breeze but also a high Level of humidity.

Building Key Information			
Data	Input		
Latitude	31.47326		
Longitude	31.45024		
Elevation [m]	6		
Number of floors	4		
Conditioned floor area [m ²]	5,812		
Clear room height [m]	3.5 – 5.0		
Conditioned volume [m ³]	20,342		
Year of construction	2020 - 2022		

Analysis Starting Situation -Baseline and Currer planning

y Jonathan Klok on Unsplashed

Business as Usual Based on building typology analysis

The key components of the energy concept are illustrated in this table. Representing the boundary conditions of the educational building (BUILD_ME Buildng Typology). The typical educational building doesn't foresee any heating demand. Regarding the measures: only minor roof insulation is planned and no special attention is given to use renewable energy sources.

Parameters	Baseline
Roof insulation (U-Value)	0.6 W/m²K
Wall insulation (U-Value)	2.1 W/m ² K
Floor insulation (U-Value)	1.9 W/m²K
Windows (U-Value; G-Value)	3.0 W/m²K; 0.7
Window fraction	Ø 27%
Shading	Manuel shading
Air tightness	0.25 1/h
Heat supply	-
Cold supply	Central (air vent) - COP 3.5
Hot water	-
Ventilation systems	Mechanical ventilation
Lighting systems	LED
Renewable energy	No
Set temperature cooling/heating	23°C (/ 20°C)

Current Situation Building Characteristics as currently planned

The key components of the energy concept are illustrated in this table, it shows that the building envelope is not in line with the thresholds of the current energy efficiency building code. While no special attention is given to use renewable energy sources.

Parameters	Baseline
Roof insulation (U-Value)	0.37 W/m²K
Wall insulation (U-Value)	2.0 W/m²K
Floor insulation (U-Value)	2.4 W/m²K
Windows (U-Value; G-Value)	5.7 W/m²K; 0.85
Window fraction	Ø 27%
Shading	No
Air tightness	0.25 1/h
Heat supply	Reversible VRF - COP 3.2
Cold supply	Reversible VRF - EER 3.7
Hot water	-
Ventilation systems	Mechanical ventilation
Lighting systems	LED
Renewable energy	No
Set temperature cooling/heating	24°C / 20°C

Comparison: BaU and Current Planning

The current planning is already more energy efficient in comparison to the BAU cases.

The proposed measures also result in a cost decrease due to the significantly lower energy cost.

However, there is still optimization potential.

Final Energy Demand

Building Envelope | External wall

Results

BUILD_ME

Building Envelope | Roof

Results

BUILD_ME

Building Envelope | Windows

Results

Guidehouse

Window Fraction

Analysis

Ventilation

Space cooling		
Auxiliary energy		
HH Electricity		

Air Tightness

What is the effect of air tightness?

BUILD_ME

Shading concept

Analysis

BUILD_ME

HVAC | Efficiencies

Analysis

BaU

Reversible Split Unit. Real annual EER: 3.4

Var 1 | 2 | 3

Reversible Split Unit with increased efficiency. Real annual EER: 3.7 | 4.0 | 4.5

Var 3 (System with best COP) has the highest effect and is very cost-effective.

Final Energy Demand

*EER at standard conditions (35°C/27°C)

BUILD_ME

HVAC | Type of cooling system Analysis

Energy Demand [kWh/(m²a)]

BaU

Reversible Split Unit. Real annual EER: 2.9

Var 1 | 2 | 3

Reversible Split Unit with increased efficiency. Real annual EER: 2.9 | 3.8 | 4.1

Fan coil distribution systems (current VRF, central fan coil) are efficient and cost-effective.

Final Energy Demand

All EERs at standard conditions (35°C/27°C)

BUILD_ME

Operational Temperatures

Analysis

BaU

Cooling Temperature: 23°C Heating Temperature: 23°C

Var 1 - 3

Cooling Temperature adapted (24°C - 26°C)

Final Energy Demand

This measure is very effective and not related to any cost

Auxiliary energy Ventilation

■ HH Electricity

Global Cost

Specific Cost [EUR/m²]

Space cooling

HH Electricity

Auxiliary energy

Space heating

Lighting

Ventilation

Var 2 with 145 kWp PV is the most cost effective measure (based on the electricity consumption of the Current).

Guidehouse

PV 73 | 145 kWp

Var 1 | 2 (Roof area 1,000 m² | 2,000 m²)

BaU / Current No PV installed.

Sizing (net metering as

Analysis

assumption)

Renewables | **PV**

Final Energy Demand

Specific Cost [EUR/m²]

Global Cost

Current

Project Plan

X% = Share of total roof area necessary for PV

Results & Conclusion

Overview of recommended measures

Four steps to reduce energy demand significantly

Optimized Solution Results

The key components of the energy concept are illustrated in this table, it shows that the building envelope is significantly enhanced to the current building code.

Special attention is given to the use of renewable energy sources in terms of PV (for electricity).

This leads to energy savings and emission reduction.

Parameters	Optimized Building
Roof insulation (U-Value)	0.38 W/m²K
Wall insulation (U-Value)	0.43 W/m²K
Floor insulation (U-Value)	2.2 W/m ² K
Windows (U-Value; G- Value)	3.0 W/m²K; 0.3
Window fraction	Ø 30%
Shading	Solar Glazing
Air tightness	0.25 1/h
Heat supply	Reversible split unit - COP 3.7
Cold supply	Reversible split unit - EER 4.5
Hot water	-
Ventilation systems	Mech. ventilation (0.3 1/h)
Lighting systems	LED
Renewable energy	143 kWp (PV)
Set temperature cooling/heating	26°C / 20°C

Comparative overview

BaU vs. Current vs. Optimized

Conclusion

- The suggested measures and the current situation lead to a significant decrease in energy demand
- The optimized solution, detected the most cost effective efficiency measures

Savings (Current/Optimized related to the BaU) Energy: - 26% / - 90% Cost: - 24% / -51%

Final Energy Demand

Global Cost

Optimized vs. current

Payback of single measures and whole package

Parameters	Optimized	Investment (optimized-current) [EUR]	Energy cost savings* [EUR / year]	Payback [years]	Lifetime [year]
Wall insulation (U-Value)	0.43 W/m²K	44,200	-16,000	3	40
Windows (U-Value; G-Value)	3.0 W/m²K; 0.65	50,800	-7,500	7	30
Shading	Solar glazing	67,500	-12,000	6	30
Heat/Cold supply	reversible split unit - COP 5.3	110,000	-18.500	6	15
Renewable energy	143 kWp (PV, maximum)	120,600	-20,900	6	20
	Total (current to optimized)**	393,100 (6.5%)***	-74,900 (-36%)	6	

* Remark: The energy cost savings have been calculated conservatively based on the current electricity starting price (appr. 8 Cent/kWh).

** Remark: Investment and savings of single measure savings cannot be summed up due to synergies between the measures (e.g. lower window fraction leads to lower cooling supply costs).

*** Remark: Compared to costs of current case and overall construction costs assumptions of 920 -1000 Euro/m² (6.5 % additional costs).

Key conclusion

Main takeaways for the Mansoura Library Project

Contact

Riadh Bhar Managing Consultant riadh.bhar@guidehouse.com

Eslam Mahdy Senior Consultant eslam.mahdy@guidehouse.com

Rana Abouzeid Researcher rana.abouzeid@idg.com.eg

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

